Tools, Shells, and Skeletons

Friday, February 24, 2012

Compared to the wide variation in domain knowledge, only a small number of AI methods are known that are useful in expert systems. That is, currently there are only a handful of ways in which to represent knowledge, or to make inferences, or to generate explanations. Thus, systems can be built that contain these useful methods without any domain-specific knowledge. Such systems are known as skeletal systems, shells, or simply AI tools.

Building expert systems by using shells offers significant advantages. A system can be built to perform a unique task by entering into a shell all the necessary knowledge about a task domain. The inference engine that applies the knowledge to the task at hand is built into the shell. If the program is not very complicated and if an expert has had some training in the use of a shell, the expert can enter the knowledge himself.

Many commercial shells are available today, ranging in size from shells on PCs, to shells on workstations, to shells on large mainframe computers. They range in price from hundreds to tens of thousands of dollars, and range in complexity from simple, forward-chained, rule-based systems requiring two days of training to those so complex that only highly trained knowledge engineers can use them to advantage. They range from general-purpose shells to shells custom-tailored to a class of tasks, such as financial planning or real-time process control.

Although shells simplify programming, in general they don't help with knowledge acquisition. Knowledge acquisition refers to the task of endowing expert systems with knowledge, a task currently performed by knowledge engineers. The choice of reasoning method, or a shell, is important, but it isn't as important as the accumulation of high-quality knowledge. The power of an expert system lies in its store of knowledge about the task domain -- the more knowledge a system is given, the more competent it becomes.

0 comments:

Post a Comment