Knowledge engineering is the art of designing and building expert systems, and knowledge engineers are its practitioners. Gerald M. Weinberg said of programming in The Psychology of Programming: "'Programming,' -- like 'loving,' -- is a single word that encompasses an infinitude of activities" (Weinberg 1971). Knowledge engineering is the same, perhaps more so. We stated earlier that knowledge engineering is an applied part of the science of artificial intelligence which, in turn, is a part of computer science. Theoretically, then, a knowledge engineer is a computer scientist who knows how to design and implement programs that incorporate artificial intelligence techniques. The nature of knowledge engineering is changing, however, and a new breed of knowledge engineers is emerging. We'll discuss the evolving nature of knowledge engineering later.
Today there are two ways to build an expert system. They can be built from scratch, or built using a piece of development software known as a "tool" or a "shell." Before we discuss these tools, let's briefly discuss what knowledge engineers do. Though different styles and methods of knowledge engineering exist, the basic approach is the same: a knowledge engineer interviews and observes a human expert or a group of experts and learns what the experts know, and how they reason with their knowledge. The engineer then translates the knowledge into a computer-usable language, and designs an inference engine, a reasoning structure, that uses the knowledge appropriately. He also determines how to integrate the use of uncertain knowledge in the reasoning process, and what kinds of explanation would be useful to the end user.
Next, the inference engine and facilities for representing knowledge and for explaining are programmed, and the domain knowledge is entered into the program piece by piece. It may be that the inference engine is not just right; the form of knowledge representation is awkward for the kind of knowledge needed for the task; and the expert might decide the pieces of knowledge are wrong. All these are discovered and modified as the expert system gradually gains competence.
The discovery and cumulation of techniques of machine reasoning and knowledge representation is generally the work of artificial intelligence research. The discovery and cumulation of knowledge of a task domain is the province of domain experts. Domain knowledge consists of both formal, textbook knowledge, and experiential knowledge -- the expertise of the experts.
0 comments:
Post a Comment